JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ion-Specific Modulation of Interfacial Interaction Potentials between Solid Substrates and Cell-Sized Particles Mediated via Zwitterionic, Super-Hydrophilic Poly(sulfobetaine) Brushes.

Zwitterionic polymer brushes draw increasing attention not only because of their superhydrophilic, self-cleaning capability but also due to their excellent antifouling capacity. We investigated the ion-specific modulation of the interfacial interaction potential via densely packed, uniform poly(sulfobetaine) brushes. The vertical Brownian motion of a cell-sized latex particle was monitored by microinterferometry, yielding the effective interfacial interaction potentials V(Δh) and the autocorrelation function of height fluctuation. The potential curvature V″(Δh) exhibited a monotonic increase according to the increase in monovalent salt concentrations, implying the sharpening of the potential confinement. An opposite tendency was observed in CaCl2 solutions, suggesting that the ion specific modulation cannot be explained by the classical Hofmeister series. When the particle fluctuation was monitored in the presence of free sulfobetaine molecules, the increase in [sulfobetaine] resulted in a distinct increase in hydrodynamic friction. This was never observed in all the other salt solutions, suggesting the interference of zwitterionic pairing of sulfobetaine side chains by the intercalation of sulfobetaine molecules into the brush layer. Furthermore, poly(sulfobetaine) brushes exhibited a very low V″(Δh) and hydrodynamic friction to human erythrocytes, which seems to explain the excellent blood repellency of zwitterionic polymer materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app