Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preventing Corneal Calcification Associated With Xylazine for Longitudinal Optical Coherence Tomography in Young Rodents.

Purpose: Spectral-domain optical coherence tomography (SD-OCT) is widely used in clinical ophthalmology and recently gained popularity in laboratory research involving small rodents. Its noninvasive nature allows repeated measurements, thereby decreasing the number of animals required. However, when used at a conventional dosage, xylazine (an α2-adrenoceptor) can cause irreversible corneal calcification, especially among young rodents. In the present study, we test whether corneal calcification associated with xylazine is mediated by the α2-adrenoceptor.

Methods: Our study tested Sprague-Dawley rats, Long-Evans rats, and CD-1 mice (postnatal day [P]14). Retinal images were captured by SD-OCT. Quantitative PCR (qPCR) was used to study gene expression, whereas receptor localization was examined by immunofluorescent staining followed by confocal microscopy. Calcium deposits were detected via von Kossa staining.

Results: When used at dosages appropriate for adult animals, ketamine-xylazine anesthetics led to a high rate of respiratory failure, increased apoptotic activity in the corneal epithelium, and irreversible corneal calcification in P14 rat pups. Meanwhile, OCT image quality decreased drastically as a result of corneal calcification among animals recovering from anesthesia. α2-Adrenoceptor subtypes were highly expressed on P14, in line with rodents' age-specific sensitivity to xylazine. Clonidine, a potent α2-adrenoceptor agonist, dose-dependently induced corneal calcification, which could be prevented by an α2-adrenoceptor antagonist.

Conclusions: These data suggest that α2-adrenoceptors contribute to corneal calcification in young rodents. Therefore, we developed a suitable OCT imaging protocol for this cohort, including a carefully tailored ketamine-xylazine dosage (60 mg/kg and 2.5 kg/mg, respectively).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app