Add like
Add dislike
Add to saved papers

Targeting iNOS to increase efficacy of immunotherapies.

Inducible NO synthase (iNOS/NOS2) protein expression is a well-studied predictor of poor outcome in multiple cancers, and it has also been associated with inflammatory and immunosuppressive processes in the tumor microenvironment. Immunotherapies are becoming increasingly key components in cancer treatment, and iNOS is receiving more attention as a potential regulator of treatment resistance. As we have reported in pancreatic cancer, by modulation of effector T-cell activity, iNOS overexpression may allow the tumor to escape the immune response through creating a microenvironment which causes recalcitrance to immunotherapy. Based on studies describing its role in the immune environment of multiple cancers, strategies that include iNOS inhibitors as combination partners may enhance immunotherapy approaches. The expression and the function of iNOS both depend on the tumor type and microenvironment, as well as on the patient's treatment history. Thus, enhancing immunotherapies, including adoptive T-cell therapies and checkpoint blockade, will require tailored cancer-specific approaches and additional levels of microenvironment regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app