JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP.

ACS Chemical Biology 2017 March 18
The efficacy of an agonist at a pentameric ligand-gated ion channel is determined by the rate at which it induces a conformational change from the resting closed state to a preopen ("flip") state. If the ability of an agonist to promote this isomerization is sufficiently low, then it becomes a partial agonist. As partial agonists at pentameric ligand-gated ion channels show considerable promise as therapeutics, understanding the structural basis of the resting-flip-state isomerization may provide insight into therapeutic design. Accordingly, we sought to identify structural correlates of the resting-flip conformational change in the glycine receptor chloride channel. We used nonsense suppression to introduce the small, fluorescent amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP), into specific sites in the extracellular and transmembrane domains. Then, under voltage-clamp conditions in Xenopus oocytes, we simultaneously quantified current and fluorescence responses induced by structurally similar agonists with high, medium, and low efficacies (glycine, β-alanine, and taurine, respectively). Analyzing results from nine ANAP-incorporated sites, we show that glycine receptor activation by agonists with graded efficacies manifests structurally as correspondingly graded movements of the β1-β2 loop, the β8-β9 loop, and the Cys-loop from the extracellular domain and the TM2-TM3 linker in the transmembrane domain. We infer that the resting-flip transition involves an efficacy-dependent molecular reorganization at the extracellular-transmembrane domain interface that primes receptors for efficacious opening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app