Add like
Add dislike
Add to saved papers

Characterization of buffy coat-derived granulocytes for clinical use: a comparison with granulocyte colony-stimulating factor/dexamethasone-pretreated donor-derived products.

Vox Sanguinis 2017 Februrary
BACKGROUND AND OBJECTIVES: Buffy coat-derived granulocytes have been described as an alternative to the apheresis product from donors pretreated with dexamethasone and granulocyte colony-stimulating factor (G-CSF). The latter is - dependent on the local and national settings - obtained following a demanding and time-consuming procedure, which is undesirable in critically ill septic patients. In contrast, buffy coat-derived products have a large volume and are often heavily contaminated with red cells and platelets. We developed a new pooled buffy coat-derived product with high purity and small volume, and performed a comprehensive functional characterization of these granulocytes.

MATERIALS AND METHODS: We pooled ten buffy coats following the production of platelet concentrates. Saline 0·9% was added to decrease the viscosity and the product was split into plasma, red cells and a 'super' buffy coat. Functional data of the granulocytes were compared to those obtained with granulocytes from healthy controls and G-CSF/dexamethasone-pretreated donors.

RESULTS: Buffy coat-derived granulocytes showed adhesion, chemotaxis, reactive oxygen species production, degranulation, NETosis and in vitro killing of Staphylococcus aureus, Escherichia coli and Aspergillus species comparable to control and G-CSF/dexamethasone-derived granulocytes. Candida killing was superior compared to G-CSF/dexamethasone-derived granulocytes. Immunophenotyping was normal; especially no signs of activation in the buffy coat-derived granulocytes were seen. Viability was reduced. Buffy coats are readily available in the regular blood production process and would take away the concerns around the apheresis product.

CONCLUSION: The product described appears a promising alternative for transfusion purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app