Add like
Add dislike
Add to saved papers

Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1.

Heparosan, the capsular polysaccharide discovered in many pathogenic bacteria, is a promising material for heparin preparation. In this study, the Pasteurella multocida heparosan synthase 1 (PmHS1) module was used to synthesize heparosan with controlled molecular weight, while tuaD/gtaB module or gcaD module was responsible for UDP-precursors production in Bacillus subtilis 168. After metabolic pathway optimization, the yield of heparosan was as high as 237.6 mg/L in strain containing PmHS1 module and tuaD/gtaB module, which indicated that these two modules were key factors in heparosan production. The molecular weight of heparosan varied from 39 to 53 kDa, which indicated that heparosan molecular weight could be adjusted by the amount of PmHS1 and the ratio of two UDP precursors. The results showed that it would be possible to produce safe heparosan with appropriate molecular weight which is useful in heparin production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app