Add like
Add dislike
Add to saved papers

PEGylation Enhances Mosquito-Larvicidal Activity of Lysinibacillus sphaericus Binary Toxin.

Bioconjugate Chemistry 2017 Februrary 16
Toxic strains of Lysinibacillus sphaericus have been used in the field for larval control of mosquito vector diseases. The high toxicity of L. sphaericus is attributed to the binary (BinAB) toxin produced as parasporal crystalline inclusions during the early stages of sporulation. BinA and BinB, the primary components of these spore-crystals, exert high toxicity when administered together. However, instability, short half-lives, and rapid proteolytic digestion can limit their use as an effective insecticide. BinA alone displays larvicidal toxicity, in the absence of BinB, albeit with much reduced activity. Here for the first time, we demonstrate the beneficial effect of PEGylation (covalent attachment of polyethylene glycol) on mosquito-larvicidal activity of BinA. Polymer conjugation was achieved using 750 Da polyethylene glycol (PEG) at two different pH values (pH 7.2 and 8.5). Two different isoforms of the biopolymers, purified to homogeneity, were highly water-soluble and resistant to trypsin and proteinase K. The mono-PEGylated BinA isoforms also displayed preservation of the toxin structure with improved thermal stability by about 3-5 °C, as evident from thermal denaturation studies by circular dichroism and differential scanning fluorimetry. Notably, PEGylation enhanced BinA toxicity by nearly 6-fold. The PEGylated BinA isoforms alone displayed high larvicidal activity (LC50 value of ∼3.4 ng/mL) against the third instar Culex larvae, which compares favorably against LC50 reported for the combination of BinA and BinB proteins. Since BinA can be synthesized easily through recombinant technology and easily PEGylated, the conjugated biopolymers offer a promising opportunity for mosquito control programs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app