JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The Postsynthetic Renaissance in Porous Solids.

Metal-organic frameworks (MOFs) have rapidly grown into a major area of chemical research over the last two decades. MOFs represent the development of covalent chemistry "beyond the molecule" and into extended structures. MOFs also present an unprecedented scaffold for performing heterogeneous organic transformations in the solid state, allowing for deliberate and precise preparation of new materials. The development of these transformations has given rise to the "postsynthetic renaissance", a suite of methods by which these materials can be transformed in a single-crystal-to-single-crystal manner. Postsynthetic modification, postsynthetic deprotection, postsynthetic exchange, postsynthetic insertion, and postsynthetic polymerization have exploited the unique features of both the organic and inorganic components of MOFs to create crystalline, porous solids of unique complexity and functionality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app