Add like
Add dislike
Add to saved papers

Surface-water dynamics and land use influence landscape connectivity across a major dryland region.

Ecological Applications 2017 January 25
Landscape connectivity is important for the long-term persistence of species inhabiting dryland freshwater ecosystems, with spatiotemporal surface-water dynamics (e.g., flooding) maintaining connectivity by both creating temporary habitats and providing transient opportunities for dispersal. Improving our understanding of how landscape connectivity varies with respect to surface-water dynamics and land use is an important step to maintaining biodiversity in dynamic dryland environments. Using a newly available validated Landsat TM and ETM+ surface-water time series, we modelled landscape connectivity between dynamic surface-water habitats within Australia's 1 million km(2) semiarid Murray Darling Basin across a 25-yr period (1987-2011). We identified key habitats that serve as well-connected "hubs," or "stepping-stones" that allow long-distance movements through surface-water habitat networks. We compared distributions of these habitats for short- and long-distance dispersal species during dry, average, and wet seasons, and across land-use types. The distribution of stepping-stones and hubs varied both spatially and temporally, with temporal changes driven by drought and flooding dynamics. Conservation areas and natural environments contained higher than expected proportions of both stepping-stones and hubs throughout the time series; however, highly modified agricultural landscapes increased in importance during wet seasons. Irrigated landscapes contained particularly high proportions of well-connected hubs for long-distance dispersers, but remained relatively disconnected for less vagile organisms. The habitats identified by our study may serve as ideal high-priority targets for land-use specific management aimed at maintaining or improving dispersal between surface-water habitats, potentially providing benefits to biodiversity beyond the immediate site scale. Our results also highlight the importance of accounting for the influence of spatial and temporal surface-water dynamics when studying landscape connectivity within highly variable dryland environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app