Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

A Murine Orthotopic Bladder Tumor Model and Tumor Detection System.

This protocol describes the generation of bladder tumors in female C57BL/6J mice using the murine bladder cancer cell line MB49, which has been modified to secrete human Prostate Specific Antigen (PSA), and the procedure for the confirmation of tumor implantation. In brief, mice are anesthetized using injectable drugs and are made to lay in the dorsal position. Urine is vacated from the bladder and 50 µL of poly-L-lysine (PLL) is slowly instilled at a rate of 10 µL/20 s using a 24 G IV catheter. It is left in the bladder for 20 min by stoppering the catheter. The catheter is removed and PLL is vacated by gentle pressure on the bladder. This is followed by instillation of the murine bladder cancer cell line (1 x 105 cells/50 µL) at a rate of 10 µL/20 s. The catheter is stoppered to prevent premature evacuation. After 1 h, the mice are revived with a reversal drug, and the bladder is vacated. The slow instillation rate is important, as it reduces vesico-ureteral reflux, which can cause tumors to occur in the upper urinary tract and in the kidneys. The cell line should be well re-suspended to reduce clumping of cells, as this can lead to uneven tumor sizes after implantation. This technique induces tumors with high efficiency. Tumor growth is monitored by urinary PSA secretion. PSA marker monitoring is more reliable than ultrasound or fluorescence imaging for the detection of the presence of tumors in the bladder. Tumors in mice generally reach a maximum size that negatively impacts health by about 3 - 4 weeks if left untreated. By monitoring tumor growth, it is possible to differentiate mice that were cured from those that were not successfully implanted with tumors. With only end-point analysis, the latter may be mistakenly assumed to have been cured by therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app