Add like
Add dislike
Add to saved papers

Adsorption Properties of Nano-MnO₂-Biochar Composites for Copper in Aqueous Solution.

There is a continuing need to develop effective materials for the environmental remediation of copper-contaminated sites. Nano-MnO₂-biochar composites (NMBCs) were successfully synthesized through the reduction of potassium permanganate by ethanol in a biochar suspension. The physicochemical properties and morphology of NMBCs were examined, and the Cu(II) adsorption properties of this material were determined using various adsorption isotherms and kinetic models. The adsorption capacity of NMBCs for Cu(II), which was enhanced by increasing the pH from 3 to 6, was much larger than that of biochar or nano-MnO₂. The maximum adsorption capacity of NMBCs for Cu(II) was 142.02 mg/g, which was considerably greater than the maximum adsorption capacities of biochar (26.88 mg/g) and nano-MnO₂ (93.91 mg/g). The sorption process for Cu(II) on NMBCs fitted very well to a pseudo-second-order model ( R ² > 0.99). Moreover, this process was endothermic, spontaneous, and hardly influenced by ionic strength. The mechanism of Cu(II) adsorption on NMBCs mainly involves the formation of complexes between Cu(II) and O-containing groups (e.g., COO-Cu and Mn-O-Cu). Thus, NMBCs may serve as effective adsorbents for various environmental applications, such as wastewater treatment or the remediation of copper-contaminated soils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app