Add like
Add dislike
Add to saved papers

Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.

Bone drilling is common in orthopedic procedures and the heat produced during conventional experimental drilling often exceeds critical temperature of 47 °C and induces thermal osteonecrosis. The osteonecrosis may be the reason for impaired healing, early loosening and implant failure. This study was undertaken to control the temperature rise by interrupted cutting and reduced friction effects at the interface of drill tool and the bone surface. In this work, rotary ultrasonic drilling technique with diamond abrasive particles coated on the hollow drill tool without any internal or external cooling assistance was used. Experiments were performed at room temperature on the mid-diaphysis sections of fresh pig bones, which were harvested immediately after sacrifice of the animal. Both rotary ultrasonic drilling on bone and conventional surgical drilling on bone were performed in a five set of experiments on each process using identical constant process parameters. The maximum temperature of each trial was recorded by K-type thermocouple device. Ethylenediaminetetraacetic acid decalcification was done for microscopic examination of bone. In this comparative procedure, rotary ultrasonic drilling on bone produced much lower temperature, that is, 40.2 °C ± 0.4 °C and 40.3 °C ± 0.2 °C as compared to that of conventional surgical drilling on bone, that is, 74.9 °C ± 0.8 °C and 74.9 °C ± 0.6 °C with respect to thermocouples fixed at first and second position, respectively. The conventional surgical drilling on bone specimens revealed gross tissue burn, microscopic evidence of thermal osteonecrosis and tissue injury in the form of cracks due to the generated force during drilling. But our novel technique showed no such features. Rotary ultrasonic drilling on bone technique is robust and superior to other methods for drilling as it induces no thermal osteonecrosis and does not damage the bone by generating undue forces during drilling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app