Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Over-Expression of Activin-β C Is Associated with Murine and Human Prostate Disease.

Activins are members of the TGF-β superfamily and have been linked to prostate cancer. There are four mammalian activin subunits (βA , βB , βC , and βE ) that dimerize to form functional proteins. The role of activin-A (βA -βA ) has been relatively well characterized and has been shown to generally inhibit growth in the prostate. In contrast, little is known about the biological function of the βC and βE subunits. Previous work indicated activin-C (βC -βC ) to be an antagonist of activin-A. This is important because resistance to activin-A growth inhibition occurs during prostate cancer progression. This paradox is not currently well understood. Hence, we hypothesize that local expression of the activin-βC subunit antagonizes activin-A-dependent growth inhibition and represents a key factor contributing to acquired insensitivity to activin-A observed in prostate cancer progression. To test our hypothesis, we characterized the ventral prostate lobes of 9-month-old transgenic mice over-expressing activin-βC and examined the expression of activin-βA , activin-βC , and the activin intracellular signaling factor, Smad-2, in human prostate diseases. Prostate epithelial cell hyperplasia, low-grade prostatic intraepithelial neoplasia (PIN) lesions, alterations in cell proliferation, and reduced Smad-2 nuclear localization were evident in mice over-expressing activin-βC . Increased activin-βA and -βC subunit immunoreactive scores and decreased Smad-2 nuclear localization were also evident in human prostate cancer. This study suggests that over-expression of activin-βC is associated with murine and human prostate pathologies. We conclude that the activin-βC subunit may have therapeutic and/or diagnostic implications in human prostate disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app