Add like
Add dislike
Add to saved papers

Enterolactone glucuronide and β-glucuronidase in antibody directed enzyme prodrug therapy for targeted prostate cancer cell treatment.

AAPS PharmSciTech 2017 August
Evidence from preclinical and animal studies demonstrated an anticancer effect of flaxseed lignans, particularly enterolactone (ENL), against prostate cancer. However, extensive first-pass metabolism following oral lignan consumption results in their systemic availability primarily as glucuronic acid conjugates (ENL-Gluc) and their modest in vivo effects. To overcome the unfavorable pharmacokinetics and improve their effectiveness in prostate cancer, antibody-directed enzyme prodrug therapy (ADEPT) might offer a novel strategy to allow for restricted activation of ENL from circulating ENL-Gluc within the tumor environment. The anti-prostate-specific membrane antigen (PSMA) antibody D7 was fused with human β-glucuronidase (hβG) via a flexible linker. The binding property of the fusion construct, D7-hβG, against purified or cell surface PSMA was determined by flow cytometry and Octet Red 384 system, respectively, with a binding rate constant, K d, of 2.5 nM. The enzymatic activity of D7-hβG was first tested using the probe, 4-methylumbelliferone glucuronide. A 3.8-fold greater fluorescence intensity was observed at pH 4.5 at 2 h compared with pH 7.4. The ability of D7-hβG to activate ENL from ENL-Gluc was tested and detected using LC-MS/MS. Enhanced generation of ENL was observed with increasing ENL-Gluc concentrations and reached 3613.2 ng/mL following incubation with 100 μM ENL-Gluc at pH 4.5 for 0.5 h. D7-hβG also decreased docetaxel IC50 value from 23 nM to 14.9 nM in C4-2 cells. These results confirmed the binding and activity of D7-hβG and additional in vitro investigation is needed to support the future possibility of introducing this ADEPT system to animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app