Add like
Add dislike
Add to saved papers

14-3-3β Depletion Drives a Senescence Program in Glioblastoma Cells Through the ERK/SKP2/p27 Pathway.

Molecular Neurobiology 2018 Februrary
The induction of senescence in cancer cells has recently been implicated as a mechanism of tumor regression in response to various modes of stress. 14-3-3 proteins are conserved scaffolding molecules that are involved in various cellular functions. Among the seven isoforms, 14-3-3β is specifically expressed in astrocytoma in correlation with the malignancy grade. We investigated the possible role of 14-3-3β in the regulation of senescence induction in A172 glioblastoma cells. The knockdown of 14-3-3β by specific small interfering RNA resulted in a significant change in cellular phenotypes and an increase in cells staining positive for senescence-associated β-galactosidase. Western blotting of the 14-3-3β-depleted A172 cells revealed increased p27 expression and decreased SKP2 expression, while the expression of p53 and p21 was not altered. Subsequently, we demonstrated that ERK is a key modulator of SKP2/p27 axis activity in 14-3-3β-mediated senescence based on the following: (1) 14-3-3β knockdown decreased p-ERK levels; (2) treatment with U0126, an MEK inhibitor, completely reproduced the senescence morphology as well as the expression profiles of p27 and SKP2; and (3) the senescence phenotypes induced by 14-3-3β depletion were considerably recovered by constitutively active ERK expression. Our results indicate that 14-3-3β negatively regulates senescence in glioblastoma cells via the ERK/SKP2/p27 pathway. Furthermore, 14-3-3β depletion also resulted in senescence phenotypes in U87 glioblastoma cells, suggesting that 14-3-3β could be targeted to induce premature senescence as a therapeutic strategy against glioblastoma progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app