Add like
Add dislike
Add to saved papers

Effects of heat and pH treatments and in vitro digestion on the biological activity of protein hydrolysates of Amaranthus hypochondriacus L. grain.

The aim of this work was to assess the effects of temperature (T), time (t) and pH treatments and an in vitro digestion on the stability of the angiotensin I-converting-enzyme-inhibitory activity (ACEIA) and antithrombotic activity (ATA; assessed as inhibition of platelet aggregation) of selected protein hydrolysates of amaranth named Alb1H103 and GloH88 and GluH24 with dipeptidyl peptidase IV inhibitory activity (DPPIVIA). Heat treatment (40-100 °C) for 1 h showed no significant differences among ACEIA, DPPIVIA and ATA of the heated hydrolysates at pH 4 and 7. There was no statistically significant loss of any bioactivity under heat treatment for 3 h at pH 4.0. Alb1H103 and GluH24 maintained the inhibitory activity of ACE and ATA at pH 7.0 for 3 h, whereas GloH88 maintained ACEIA and ATA for 2.0 h at pH 7.0. The pH effect on hydrolysates bioactivity was assessed in the range of 2.0-12.0. This was negligible on ACEIA, ATA and DPPIVIA. The in vitro digestion was performed using pepsin, trypsin (T) and α-chymotrypsin (C). A previous treatment of hydrolysates with pepsin improved the proteolytic activities of T and C. The hydrolysates kept at 100 °C for 1 h at pH 4.0, showed a significant increase in bioactivity. Conversely, a treatment at pH 7.0 showed no significant difference ( p  < 0.05) in the hydrolysates bioactivities after their digestion. Thus, biological activity of hydrolysates may be preserved or enhanced, depending on their processing conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app