Add like
Add dislike
Add to saved papers

Determination of time- and size-dependent fine particle emission with varied oil heating in an experimental kitchen.

Particulate matter (PM) from cooking has caused seriously indoor air pollutant and aroused risk to human health. It is urged to get deep knowledge of their spatial-temporal distribution of source emission characteristics, especially ultrafine particles (UFP<100nm) and accumulation mode particles (AMP 100-665nm). Four commercial cooking oils are auto dipped water to simulate cooking fume under heating to 265°C to investigate PM emission and decay features between 0.03 and 10μm size dimension by electrical low pressure impactor (ELPI) without ventilation. Rapeseed and sunflower produced high PM2.5 around 6.1mg/m3 , in comparison with those of soybean and corn (5.87 and 4.65mg/m3 , respectively) at peak emission time between 340 and 460sec since heating oil, but with the same level of particle numbers 6-9×105 /cm3 . Mean values of PM1.0 /PM2.5 and PM2.5 /PM10 at peak emission time are around 0.51-0.66 and 0.23-0.29. After 15min naturally deposition, decay rates of PM1.0 , PM2.5 and PM10 are 13.3%-29.8%, 20.1%-33.9% and 41.2%-54.7%, which manifest that PM1.0 is quite hard to decay than larger particles, PM2.5 and PM10 . The majority of the particle emission locates at 43nm with the largest decay rate at 75%, and shifts to a larger size between 137 and 655nm after 15min decay. The decay rates of the particles are sensitive to the oil type.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app