JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fraction Dynamic-Surface-Based Neuroadaptive Finite-Time Containment Control of Multiagent Systems in Nonaffine Pure-Feedback Form.

In this paper, the problem of containment control of networked multiagent systems is considered with special emphasis on finite-time convergence. A distributed neural adaptive control scheme for containment is developed, which, different from the current state of the art, is able to achieve dynamic containment in finite time with sufficient accuracy despite unknown nonaffine dynamics and mismatched uncertainties. Such a finite-time feature, highly desirable in practice, is made possible by the fraction dynamic surface control design technique based on the concept of virtual fraction filter. In the proposed containment protocol, only the local information from the neighbor followers and the local position information from the neighbor leaders are required. Furthermore, since the available information utilized is local and is embedded into the control scheme through fraction power feedback, rather than direct linear or regular nonlinear feedback, the resultant control scheme is truly distributed. In addition, although mismatched uncertainties and external disturbances are involved, only one single generalized neural parameter needs to be updated in the control scheme, making its design and implementation straightforward and inexpensive. The effectiveness of the developed method is also confirmed by numerical simulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app