Add like
Add dislike
Add to saved papers

Estimation and LQG Control Over Unreliable Network With Acknowledgment Randomly Lost.

In this paper, we study the state estimation and optimal control [i.e., linear quadratic Gaussian (LQG) control] problems for networked control systems in which control inputs, observations, and packet acknowledgments (ACKs) are randomly lost. The packet ACK is a signal that is transmitted from the actuator to notice the estimator the occurence of control packet loss. For such systems, we obtain the optimal estimator, which is consisted of exponentially increasing terms. For the solvability of the LQG problem, we come to a conclusion that in general even the optimal LQG control exists, it is impossible and unnecessary to be obtained as its calculation is not only technically difficult but also computationally prohibitive. This issue motivates us to design a suboptimal LQG controller for the underlying systems. We first develop a suboptimal estimator by using the estimator gain in each term of the optimal estimator. Then we derive a suboptimal LQG controller and establish the conditions for stability of the closed-loop systems. Examples are given to illustrate the effectiveness and advantages of the proposed design scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app