Add like
Add dislike
Add to saved papers

Spectrum-Diverse Neuroevolution With Unified Neural Models.

Learning algorithms are being increasingly adopted in various applications. However, further expansion will require methods that work more automatically. To enable this level of automation, a more powerful solution representation is needed. However, by increasing the representation complexity, a second problem arises. The search space becomes huge, and therefore, an associated scalable and efficient searching algorithm is also required. To solve both the problems, first a powerful representation is proposed that unifies most of the neural networks features from the literature into one representation. Second, a new diversity preserving method called spectrum diversity is created based on the new concept of chromosome spectrum that creates a spectrum out of the characteristics and frequency of alleles in a chromosome. The combination of spectrum diversity with a unified neuron representation enables the algorithm to either surpass or equal NeuroEvolution of Augmenting Topologies on all of the five classes of problems tested. Ablation tests justify the good results, showing the importance of added new features in the unified neuron representation. Part of the success is attributed to the novelty-focused evolution and good scalability with a chromosome size provided by spectrum diversity. Thus, this paper sheds light on a new representation and diversity preserving mechanism that should impact algorithms and applications to come.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app