Journal Article
Research Support, N.I.H., Extramural
Video-Audio Media
Add like
Add dislike
Add to saved papers

Local Transverse-Slice-Based Level-Set Method for Segmentation of 3-D High-Frequency Ultrasonic Backscatter From Dissected Human Lymph Nodes.

OBJECTIVE: To detect metastases in freshly excised human lymph nodes (LNs) using three-dimensional (3-D), high-frequency, quantitative ultrasound (QUS) methods, the LN parenchyma (LNP) must be segmented to preclude QUS analysis of data in regions outside the LNP and to compensate ultrasound attenuation effects due to overlying layers of LNP and residual perinodal fat (PNF).

METHODS: After restoring the saturated radio-frequency signals from PNF using an approach based on smoothing cubic splines, the three regions, i.e., LNP, PNF, and normal saline (NS), in the LN envelope data are segmented using a new, automatic, 3-D, three-phase, statistical transverseslice-based level-set (STS-LS) method that amends Lankton's method. Due to ultrasound attenuation and focusing effects, the speckle statistics of the envelope data vary with imaged depth. Thus, to mitigate depth-related inhomogeneity effects, the STS-LS method employs gamma probabilitydensity functions to locally model the speckle statistics within consecutive transverse slices.

RESULTS: Accurate results were obtained on simulated data. On a representative dataset of 54 LNs acquired from colorectal-cancer patients, the Dice similarity coefficient for LNP, PNF, and NS were 0.938 ± 0.025, 0.832 ± 0.086, and 0.968 ± 0.008, respectively, when compared to expert manual segmentation.

CONCLUSION: The STS-LS outperforms the established methods based on global and local statistics in our datasets and is capable of accurately handling the depth-dependent effects due to attenuation and focusing.

SIGNIFICANCE: This advance permits the automatic QUS-based cancer detection in the LNs. Furthermore, the STS-LS method could potentially be used in a wide range of ultrasound-imaging applications suffering from depth-dependent effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app