Add like
Add dislike
Add to saved papers

Miniaturizing Floating Traps to Increase RF Safety of Magnetic Resonance Guided Percutaneous Procedures.

OBJECTIVE: MRI in the area of cardiovascular catheter-based interventional procedures is an active field. A common intervention - revascularization of chronic total occlusions, requires a conductive guidewire for revascularization. The mechanical properties of guidewires are paramount to the successful execution of such procedures. Furthermore to benefit from MRI techniques, additional conductors are required to transmit signal from the tip of a catheter. Long thin conductors in MRI systems pose a safety risk in the form of RF heating due to induced RF currents on the conductors. Unfortunately many existing techniques to mitigate this risk require physical modification of the conductors, inevitably resulting in detrimental mechanical trade-offs in the guidewire. This manuscript proposes a novel application and miniaturization of an existing device, the floating RF trap. The RF trap couples strongly to any thin conductor passing through the trap lumen inducing significant series impedance. This results in reduction of induced RF currents and thus heating.

METHODS & RESULTS: This study shows theoretical and experimental analysis of induced impedance as well as theoretical reduction in heating due to various distributions of traps along the length of a catheter. Results of measuring induced current and heating in phantom experiments are also presented. Through comparison with commercial simulation packages and results of phantom experiments, it is shown that miniaturized RF traps can be modelled accurately, including their induced series impedance and effect on induced RF current. Conclusion & Significance: It was demonstrated that floating RF traps present a feasible method to mitigate RF heating while maintaining important mechanical properties of guidewires.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app