Add like
Add dislike
Add to saved papers

Photoprotective Potential of Glycolic Acid by Reducing NLRC4 and AIM2 Inflammasome Complex Proteins in UVB Radiation-Induced Normal Human Epidermal Keratinocytes and Mice.

DNA and Cell Biology 2017 Februrary
Exposure to UVB radiation induces inflammation and free radical-mediated oxidative stress through reactive oxygen species (ROS) that play a crucial role in the induction of skin cancer. Glycolic acid (GA) is frequently used in cosmetics and dermatology. The aim of the study was to analyze the photoprotective mechanisms through which GA retards UVB-induced ROS accumulation and inflammation in normal human epidermal keratinocytes (NHEKs) and mice skin, respectively. NHEK cell line and C57BL/6J mice were treated with GA (0.1 or 5 mM) for 24 h followed by UVB irradiation. ROS accumulation, DNA damage, and expression of inflammasome complexes (NLRP3, NLRC4, ASC, and AIM2) were measured in vitro. Epidermal thickness and inflammasome complex proteins were analyzed in vivo. GA significantly prevented UVB-induced loss of skin cell viability, ROS formation, and DNA damage (single and double strands DNA break). GA suppressed the mRNA expression levels of NLRC4 and AIM2 among the inflammasome complexes. GA also blocked interleukin (IL)-1β by reducing the activity of caspase-1 in the NHEKs. Treatment with GA (2%) inhibited UVB-induced inflammation marker NLRC4 protein levels in mouse dorsal skin. The photoprotective activity of GA was ascribed to the inhibition of ROS formation and DNA damage, as well as a reduction in the activities of inflammasome complexes and IL-1β. We propose that GA has anti-inflammatory and photoprotective effects against UVB irradiation. GA is potentially beneficial to the protection of human skin from UV damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app