Add like
Add dislike
Add to saved papers

The response of phytoplankton and microlayer-adapted bacteria to monolayer application in a humic, eutrophic irrigation dam.

Repeat applications of artificial monolayers to farm irrigation dams to reduce evaporative loss may adversely affect water quality by enhancing populations of microlayer-adapted bacteria and blue-green algae. The microlayer, subsurface and water column of a 16 ha dam were monitored every two weeks for 18 months, to benchmark the seasonal dynamics of phytoplankton and microlayer-adapted bacteria prior to monolayer application. Results for Secchi depth, total P, total N, chlorophyll a, phytobiovolume and UV254 absorbance, characterise Logan's Dam as humic and hypereutrophic. Seasonal peaks in the cyanobacterial species Microcystis aeruginosa and Anabaena sp. associated with regular thermal stratification periods over summer, exceeded the Queensland algal bloom alert level. Dissolved organic matter derived from aromatic char in the black soil used to construct the dam was the main substrate for microlayer-adapted bacteria. Intermittent monolayer application over seven weeks in late summer temporarily increased surface pressure, indicating a condensed monolayer had formed, with no increase in chemical oxygen demand or in populations of cyanobacteria or microlayer-adapted bacteria. The increase in dissolved organic carbon was well below the concentration recorded after a pump ingress event in late spring. In this humic hypereutrophic irrigation dam, repeat applications of the experimental monolayer formulation did not adversely affect water quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app