Add like
Add dislike
Add to saved papers

Bistability and Bifurcation in Minimal Self-Replication and Nonenzymatic Catalytic Networks.

Bistability and bifurcation, found in a wide range of biochemical networks, are central to the proper function of living systems. We investigate herein recent model systems that show bistable behavior based on nonenzymatic self-replication reactions. Such models were used before to investigate catalytic growth, chemical logic operations, and additional processes of self-organization leading to complexification. By solving for their steady-state solutions by using various analytical and numerical methods, we analyze how and when these systems yield bistability and bifurcation and discover specific cases and conditions producing bistability. We demonstrate that the onset of bistability requires at least second-order catalysis and results from a mismatch between the various forward and reverse processes. Our findings may have far-reaching implications in understanding early evolutionary processes of complexification, emergence, and potentially the origin of life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app