Add like
Add dislike
Add to saved papers

A Ni-based MOF for selective detection and removal of Hg 2+ in aqueous medium: a facile strategy.

The uncoordinated sulfur atom of the thiocyanato ligand of a 3D metallo-organic framework (MOF), [Ni(3-bpd)2 (NCS)2 ]n (1), where 3-bpd is 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, has been explored for selective visual detection and effective removal of Hg2+ in aqueous medium. [Ni(3-bpd)2 (NCS)2 ]n has been synthesized under ambient conditions and characterized by elemental analysis, FT-IR spectroscopy, UV-vis spectroscopy, FE-SEM and EDX, XPS and X-ray single crystal diffraction analysis. 1 shows two thiocyanato moieties bound to the hexacoordinated metal center with N atoms whereas the sulfur end remains uncoordinated. The strategy for binding and removal of Hg2+ is very simple. Hg2+ is known for its affinity for strong bond formation with the soft center, S. The sulfur atoms form bonds with this heavy metal ion. The color of 1 changes from green to grey as Hg atoms form coordinate bonds with S atoms of the SCN- group. It has been found that Hg is present in grey materials in a 2 : 1 ratio (Hg/Ni). 1 is selective for Hg as other metals/metalloids, including heavy metal ions, present in water are unable to change the color of 1 as they do not form any bond with it. Binding of Hg with the S end of the thiocyanato moiety has been confirmed by a number of techniques, e.g. IR and UV-vis spectra, FESEM, EDX, and XPS. Simple filtration is done to separate grey materials for the removal of Hg2+ ion from the water medium. A theoretical calculation has been performed to rationalize the fact.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app