Add like
Add dislike
Add to saved papers

Separation of Anti-Phase Signals Due to Parahydrogen Induced Polarization via 2D Nutation NMR Spectroscopy.

The present work introduces a novel method for the selective detection of1 H NMR anti-phase signals caused by the pairwise incorporation of parahydrogen into olefins on noble-metal-containing catalysts. Via a two-dimensional (2D) nutation NMR experiment, the anti-phase signals of hyperpolarized1 H nuclei are separated due to their double nutation frequency compared to that of thermally polarized1 H nuclei. For demonstrating this approach, parahydrogen induced polarization (PHIP) was achieved via the hydrogenation of propene with parahydrogen on platinum-containing silica and investigated by in situ1 H MAS NMR spectroscopy under continuous-flow conditions, that is, the hydrogenation reaction was performed inside the magnet of the NMR spectrometer. The 2D nutation NMR experiment described in the present work is useful for the separation of overlapping anti-phase and in-phase signals due to hyperpolarized and thermally polarized1 H nuclei, respectively, which is important for research in the field of heterogeneous catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app