Add like
Add dislike
Add to saved papers

Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model.

Streptococcus suis (SS) is an important pathogen for pigs, and it is also considered as a zoonotic agent for humans. Meningitis is one of the most common features of the infection caused by SS, but little is known about the mechanisms of SS meningitis. Recent studies have revealed that small RNAs (sRNAs) have emerged as key regulators of the virulence in several bacteria. In the previous study, we reported that SS sRNA rss04 was up-regulated in pig cerebrospinal fluid and contributes to SS virulence in a zebrafish infection model. Here, we show that rss04 facilitates SS invasion of mouse brain and lung in vivo. Label-free quantitation mass spectrometry analysis revealed that rss04 regulates transcriptional regulator CcpA and several virulence factors including LuxS. Transmission electron microscope and Dot-blot analyses indicated that rss04 represses capsular polysaccharide (CPS) production, which in turn facilitates SS adherence and invasion of mouse brain microvascular endothelial cells bEnd.3 in vitro and activates the mRNA expression of TLR2, CCL2, IL-6 and TNF-α in mouse brain in vivo at 12h post-infection. In addition, rss04 positively regulates SS biofilm formation. Survival analysis of infected mice showed that biofilm state in brain contributes to SS virulence by intracranial subarachnoidal route of infection. Together, our data reveal that SS sRNA rss04 contributes to the induction of meningitis by regulating the CPS synthesis and by inducing biofilm formation, thereby increasing the virulence in a mouse infection model. To our knowledge, rss04 represents the first bacterial sRNA that plays definitive roles in bacterial meningitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app