Add like
Add dislike
Add to saved papers

Simultaneous spatio-temporal matching pursuit decomposition of evoked brain responses in MEG.

Biological Cybernetics 2017 Februrary
We present a novel approach to the spatio-temporal decomposition of evoked brain responses in magnetoencephalography (MEG) aiming at a sparse representation of the underlying brain activity in terms of spatio-temporal atoms. Our approach is characterized by three attributes which constitute significant improvements with respect to existing approaches: (1) the spatial and temporal decomposition is addressed simultaneously rather than sequentially, with the benefit that source loci and corresponding waveforms can be unequivocally allocated to each other, and, hence, allow a plausible physiological interpretation of the parametrized data; (2) it is free from severe a priori assumptions about the solution space; (3) it comprises an optimization technique for the use of very large spatial and temporal subdirectories to greatly reduce the otherwise enormous computational cost by making use of the Cauchy-Schwarz inequality. We demonstrate the efficiency of the approach with simulations and real MEG data obtained from a subject exposed to a simple auditory stimulus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app