Add like
Add dislike
Add to saved papers

Insensitivity of PI3K/Akt/GSK3 signaling in peripheral blood mononuclear cells of age-related macular degeneration patients.

Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C (IL-17RC), a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration (AMD), was associated with altered activation of phosphatidylinositide 3-kinase (PI3K), Akt, and glycogen synthase kinase 3 (GSK3). We wondered whether or not altered PI3K, Akt, and GSK3 activities could be detected in peripheral blood mononuclear cells (PBMC) obtained from AMD patients. In the patients' PBMC, absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed, which was accompanied with increased phosphorylation of GSK3 substrates (e.g. CCAAT enhancer binding protein α, insulin receptor substrate 1, and TAU), indicative of enhanced GSK3 activation. In addition, decreased protein mass of PI3K85α and tyrosine-phosphorylation of PI3K50α was present in PBMC of the AMD patients, suggesting impaired PI3K activation. Moreover, abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients. These data demonstrate that despite the presence of high levels of IL-17RC, Wnt-3a and vascular endothelial growth factor, the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients. Thus, measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app