Add like
Add dislike
Add to saved papers

Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars.

Charred organic matter is recently receiving attention for its potential use as soilless growth medium. However, depending on its origin and on the manufacturing technology, it can result toxic for plants. This fact implies that a detoxifying treatment ought to be devised in order to reclaim char in this way. We have studied three materials which combine these factors: two pyrolyzed biochars, one from forest waste (BCH-FW) and another from olive mill waste (BCH-OMW), and one hydrothermally carbonized hydrochar from forest waste (HYD-FW). These materials are suspicious of phytotoxicity due to their high pH, high salinity, or presence of organic toxics. For these new materials, it is mandatory to select fast and reliable bioassays to predict their potential phytotoxicity. In order to achieve this goal water extracts of the three chars were subjected to bioassays of seed germination and bioassays of seedling growth in hydroponic conditions. The biochar from olive mill waste and the hydrochar, but not the biochar from forest waste, showed considerable phytotoxicity as seed germination and plant growth were negatively affected (e.g. BCH-OMW reduced seed germination by 80% and caused early seedling death). In order to adjust pH and electrical conductivity for plant growth, treatments of acidification and salt leaching with optimal diluted HNO3 solutions (0.3 N, 0.2 N, and 0.75 N for BCH-OMW, BCH-FW, and HYD-FW, respectively) as calculated from titration curves, were conducted. The acid treatment reduced electrical conductivity in BCH-OMW (from 9.2 to 4.5 dS m(-1)), pH (maximum in BCH-FW from 9.6 to 6.2) and water soluble carbonaceous compounds (maximum in HYD-FW from 5969 to 2145 mg kg(-1)) in the three chars, and increased N content (maximum in BCH-OMW from 50 to 6342 mg kg(-1)) in the three chars. Bioassays on acid-treated chars demonstrated the absence of phytotoxicity and even stimulation of seedling growth over the control (increase of 86% and 56% for BCH-FW and HYD-FW, respectively). We conclude that acidification of chars with diluted HNO3 is a viable technique to conform chars to standards for plant growth purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app