JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The suppression of droplet-droplet coalescence in a sheared yield stress fluid.

Efforts to stabilize emulsions against coalescence in flow have often focused on modifying properties of the interface between the continuous and dispersed phases, to create a repulsive barrier against coalescence. But prior to experiencing any interaction force, the liquid film between two colliding drops has to drain, and if this drainage process is arrested, coalescence will be suppressed. In this work, scaling analyses and thin-film lubrication simulations are used to study the hydrodynamic drainage properties of thin films of a Bingham fluid (a yield stress fluid, which flows only when a critical stress is exceeded) created between two drops colliding under the action of a constant force. Our study shows that the hydrodynamic drainage process can be arrested completely when the film reaches a critical thickness, before attractive forces result in the rupture of the film, provided that the film shape is in the dimpled configuration. This critical thickness is hf=6τ0(2)R(3)/γ(2), where τ0 is the yield stress of the suspending medium, R is the drop radius and γ is the interfacial tension between the fluids. The yield stress can thus serve as an independent tuning parameter that sets an upper bound on the drop size beyond which coalescence is turned off in sheared emulsions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app