JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases.

The major component of bacterial cell wall is peptidoglycan (PG), a complex polymer formed by long glycan chains cross-linked by peptide stems. PG is in constant equilibrium requiring well-orchestrated coordination between synthesis and degradation. The resulting cell-wall fragments can be recycled, act as messengers for bacterial communication, as effector molecules in immune response or as signaling molecules triggering antibiotics resistance. Tailoring and recycling of PG requires the cleavage of different covalent bonds of the PG sacculi by a diverse set of specific enzymes whose activities are strictly regulated. Here, we review the molecular mechanisms that govern PG remodeling focusing on the structural information available for the bacterial lytic enzymes and the mechanisms by which they recognize their substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app