Comparative Study
Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Precision Phenotyping in Heart Failure and Pattern Clustering of Ultrasound Data for the Assessment of Diastolic Dysfunction.

OBJECTIVES: The aim of this study was to investigate whether cluster analysis of left atrial and left ventricular (LV) mechanical deformation parameters provide sufficient information for Doppler-independent assessment of LV diastolic function.

BACKGROUND: Medical imaging produces substantial phenotyping data, and superior computational analyses could allow automated classification of repetitive patterns into patient groups with similar behavior.

METHODS: The authors performed a cluster analysis and developed a model of LV diastolic function from an initial exploratory cohort of 130 patients that was subsequently tested in a prospective cohort of 44 patients undergoing cardiac catheterization. Patients in both study groups had standard echocardiographic examination with Doppler-derived assessment of diastolic function. Both the left ventricle and the left atrium were tracked simultaneously using speckle-tracking echocardiography (STE) for measuring simultaneous changes in left atrial and ventricular volumes, volume rates, longitudinal strains, and strain rates. Patients in the validation group also underwent invasive measurements of pulmonary capillary wedge pressure and LV end diastolic pressure immediately after echocardiography. The similarity between STE and conventional 2-dimensional and Doppler methods of diastolic function was investigated in both the exploratory and validation cohorts.

RESULTS: STE demonstrated strong correlations with the conventional indices and independently clustered the patients into 3 groups with conventional measurements verifying increasing severity of diastolic dysfunction and LV filling pressures. A multivariable linear regression model also allowed estimation of E/e' and pulmonary capillary wedge pressure by STE in the validation cohort.

CONCLUSIONS: Tracking deformation of the left-sided cardiac chambers from routine cardiac ultrasound images provides accurate information for Doppler-independent phenotypic characterization of LV diastolic function and noninvasive assessment of LV filling pressures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app