Add like
Add dislike
Add to saved papers

Improving structural brain images acquired with the 3D FLASH sequence.

The three-dimension Fast Low Angle SHot Magnetic Resonance Imaging (3D FLASH) sequence has been widely adopted in medical diagnostic imaging because of its availability, simplicity, and high spatial resolution. To improve the quality of structural brain images acquired with the 3D FLASH sequence, we developed a parameter optimization scheme and image inhomogeneity correction methods. The optimal imaging parameters were determined by maximizing gray-matter and white-matter CNR efficiency. Compared to protocols based on published parameters, applying the proposed optimal imaging parameters increased CNR efficiency by >10%. Image inhomogeneity, including signal and CNR inhomogeneity, was corrected by the choice of an optimal flip angle, estimated transmit function, and estimated receive sensitivity. As a result, our optimization and image inhomogeneity correction greatly improved the quality of images acquired with the 3D FLASH sequence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app