JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Probing transport of charged β-lactamase inhibitors through OmpC, a membrane channel from E. coli.

One of the major causes of antibiotic resistance in the Gram-negative bacteria is the low permeability across the outer membrane. Currently a main bottleneck in the development of effective antibiotics is the lack of a general method to quantify permeation which would allow screening for optimal scaffolds. Here, we present a permeation assay based on conventional electrophysiology. The method mainly involves application of concentration gradients of charged molecules with different electrophoretic mobilities through a membrane channel. Thus the unbalanced flux creates an electrostatic potential which provides direct information on relative ion fluxes. The experimental approach applied here involves measuring zero-current-potentials and the corresponding single channel conductance. For OmpC and the β-lactamase inhibitor avibactam at a 10 μm gradient the calculated flux rate at Vm =0mV was about n=200 molecules/s per OmpC single pore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app