Journal Article
Review
Add like
Add dislike
Add to saved papers

Understanding quasi-apoptosis of the most numerous enucleated components of blood needs detailed molecular autopsy.

Erythrocytes are the most numerous cells in human body and their function of oxygen transport is pivotal to human physiology. However, being enucleated, they are often referred to as a sac of molecules and their cellularity is challenged. Interestingly, their programmed death stands a testimony to their cell-hood. They are capable of self-execution after a defined life span by both cell-specific mechanism and that resembling the cytoplasmic events in apoptosis of nucleated cells. Since the execution process lacks the nuclear and mitochondrial events in apoptosis, it has been referred to as quasi-apoptosis or eryptosis. Several studies on molecular mechanisms underlying death of erythrocytes have been reported. The data has generated a non-cohesive sketch of the process. The lacunae in the present knowledge need to be filled to gain deeper insight into the mechanism of physiological ageing and death of erythrocytes, as well as the effect of age of organism on RBCs survival. This would entail how the most numerous cells in the human body die and enable a better understanding of signaling mechanisms of their senescence and premature eryptosis observed in individuals of advanced age.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app