JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Body Fluid Degradomics and Characterization of Basic N-Terminome.

Rapid improvements in instrumentation and data analysis make mass spectrometry-based proteomics the method of choice for global characterization of proteomes and discovery of protein-based biomarkers. On the contrary to tissue biopsies, body fluids-e.g., blood, wound fluid, urine, and saliva-are noninvasive and easy to collect and process. However, they are very complex and present high dynamic ranges of protein concentrations, rendering direct shotgun proteomics analysis as inefficient for identification of low-abundance proteins in these specimens. Sample prefractionation, immunoaffinity depletion of highly abundant proteins, and enrichment of posttranslational modifications (PTM) are common strategies for proteome simplification of body fluids. Combinatorial peptide ligand libraries (CPLL) relatively deplete high-abundance proteins by binding equimolar amounts of protein species in the sample and provide an elegant species-independent alternative to immunoaffinity-based approaches. By cleaving target proteins, proteases catalyze an irreversible PTM, whereby uncontrolled proteolysis is associated with many diseases. Thus, proteolytic events represent powerful indicators for disease progression and their specific identification in body fluids holds great promises for establishment of novel biomarkers. Quantitative N-terminal enrichment strategies, such as terminal amine isotopic labeling of substrates (TAILS) detect protease-generated neo-N-termini with high specificity and increase coverage of low-abundance proteins by inherent proteome simplification. In this chapter, we describe a protocol that combines the CPLL technology with iTRAQ-based TAILS to systematically characterize the basic N-terminome of body fluid proteomes and its alterations in disease conditions that we have successfully applied to explore the wound fluid degradome at multiple time points after skin injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app