Add like
Add dislike
Add to saved papers

Exploration of SAR for novel 2-benzylbenzimidazole analogs as inhibitor of transcription factor NF-κB.

A novel series of 2-benzylbenzimidazole analogs was designed, synthesized and investigated for their in vitro activities against LPS induced NF-κB inhibition in RAW 264.7 cells using the SEAP assay. Among them, 4-((4-(cyclohexylmethoxy)-1H-benzo[d]imidazol-2-yl)methyl)phenol (6e, >100% inhibition at 30 μM, IC50 = 3.0 μM), 4-((5-(cyclohexylmethoxy)-1H-benzo[d]imidazol-2-yl)methyl)phenol (6j, 96% inhibition at 30 μM, IC50 = 4.0 μM) and 2-((4-(cyclohexylmethoxy)-1H-benzo[d]imidazol-2-yl)methyl)phenol (6k, 95% inhibition at 30 μM, IC50 = 5.0 μM) showed strong inhibitory activity. The structure activity relationship confirmed that the substitution on benzimidazole ring A with hydrophobic cyclohexylmethoxy group at position 4 or 5 markedly enhances the activity. In addition, the hydrophilic hydrogen bonding donor group (OH) at position 2 or 4 on phenyl ring B connected with one methylene spacer to the benzimidazole ring is favorable for the inhibitory activity. However, hydrophobic (-OCH3 and -Cl) groups on phenyl ring B decrease the activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app