JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice.

The essential mechanisms and virulence factors enabling Francisella species to replicate inside host macrophages are not fully understood. Methionine sulfoxide reductase (Msr) is an antioxidant enzyme that converts oxidized methionine into methionine. Francisella tularensis carries msrA and msrB in different parts of its chromosome. In this study, single and double mutants of msrA and msrB were constructed, and the characteristics of these mutants were investigated. The msrB mutant exhibited decreased in vitro growth, exogenous oxidative stress resistance and intracellular growth in macrophages, whereas the msrA mutant displayed little difference with wild-type strain. The double mutant exhibited the same characteristics as the msrB mutant. The bacterial count of the msrB mutant was significantly lower than that of the wild-type strain in the liver and spleen of mice. The bacterial count of the msrA mutant was lower than that of the wild-type strain in the liver, but not in the spleen, of mice. These results suggest that MsrB has an important role in the intracellular replication of F. tularensis in macrophages and infection in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app