Add like
Add dislike
Add to saved papers

Role of Microglia Autophagy in Microglia Activation After Traumatic Brain Injury.

OBJECTIVE: We evaluated the role of microglia autophagy in microglia activation after traumatic brain injury (TBI) in rats.

METHODS: TBI was induced by a fluid percussion TBI device. All rats were killed 24 hours after TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin-eosin staining. Immunohistochemistry and Western blotting of ionized calcium-binding adapter molecule 1 was used to determine changes in microglia activation. Double staining of microtubule-associated protein light chain 3, Beclin-1, and ionized calcium-binding adapter molecule 1 was used to assess changes of microglia autophagy. Enzyme-linked immunosorbent assay of tumor necrosis factor-α and interleukin-1β was used to evaluate changes in inflammatory responses. Terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling staining was used to determine cell death in the ipsilateral hippocampus.

RESULTS: At 24 hours after TBI, microglial cells became activated, and the autophagy inhibitor 3-methyladenine (3-MA) further promoted microglia activation. Protein light chain 3- and Beclin-1-positive microglial cells were increased after TBI, whereas 3-MA decreased the number of positive microglial cells, increasing the expression of tumor necrosis factor-α and interleukin-1β; terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling staining demonstrated that 3-MA could increase the number of terminal deoxyribonucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick-end labeling-positive cells (16.83 ± 0.83 vs. 11 ± 0.82, P < 0.001).

CONCLUSIONS: Our data demonstrated that TBI induced microglia activation and microglia autophagy. Inhibition of microglia autophagy with 3-MA increased microglia activation and neural apoptosis. These findings indicate that targeting microglia autophagy may be a therapeutic strategy for TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app