JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Using pharmacokinetic modelling to improve prescribing practices of intravenous aminophylline in childhood asthma exacerbations.

OBJECTIVE: To evaluate physiologically based pharmacokinetic modelling (PBPK) software in paediatric asthma patients using intravenous aminophylline.

METHODS: Prospective clinical audit of children receiving iv aminophylline (July 2014 to June 2016), and in-silico modelling using Simcyp software.

RESULTS: Thirty-eight admissions (25 children) were included. Children with aminophylline levels ≥10 mg/l had equivalent clinical outcomes compared to those <10 mg/L, and adverse effects occurred in 57%. Therapeutic drug monitoring (TDM) data correlated well with PBPK model. PBPK modelling of a 5 mg/kg iv loading dose (≤18yr) shows a mean Cmax of 8.99 mg/L (5th-95th centiles 5.5-13.7 mg/L), with 70.3% of subjects <10 mg/L, 29.4% achieving 10-20 mg/L, and 0.1% > 20 mg/L. For an aminophylline infusion (0-12 y) of 1.0  mg/kg/h, the mean steady state infusion concentration was 16.4 mg/L, (5th-95th centiles 5.3-32 mg/L), with 26.8% having a serum concentration >20 mg/L. For 12-18yr receiving 0.5  mg/kg/h infusion, the mean steady state infusion concentration was 9.37 mg/L (5th-95th centiles 3.4-18 mg/L), with 59.8% having a serum concentration <10 mg/L.

CONCLUSION: PBPK software modelling correlates well with clinical data. Current aminophylline iv loading dosage recommendations achieve levels <10 mg/l in 70% of children. Routine TDM may need altering as low risk of toxicity (>20 mg/l).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app