Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influence of kinematics on the wear of a total ankle replacement.

Journal of Biomechanics 2017 Februrary 29
Total ankle replacement (TAR) is an alternative to fusion, replacing the degenerated joint with a mechanical motion-preserving alternative. Minimal pre-clinical testing has been reported to date and existing wear testing standards lack definition. Ankle gait is complex, therefore the aim of this study was to investigate the effect on wear of a range of different ankle gait kinematic inputs. Five Zenith (Corin Group) TARs were tested in a modified knee simulator for twelve million cycles (Mc). Different combinations of IR rotation and AP displacement were applied every 2Mc to understand the effects of the individual kinematics. Wear was assessed gravimetrically every Mc and surface profilometry undertaken after each condition. With the initial unidirectional input with no AP displacement the wear rate measured 1.2±0.6mm3 /Mc. The addition of 11° rotation and 9mm of AP displacement caused a statistically significant increase in the wear rate to 25.8±3.1mm3 /Mc. These inputs seen a significant decrease in the surface roughness at the tibial articulation. Following polishing three displacement values were tested; 0, 4 and 9mm with no significant difference in wear rate ranging 11.8-15.2mm3 /Mc. TAR wear rates were shown to be highly dependent on the addition of internal/external rotation within the gait profile with multidirectional kinematics proving vital in the accurate wear testing of TARs. Prior to surface polishing wear rates were significantly higher but once in a steady state the AP displacement had no significant effect on the wear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app