Journal Article
Review
Add like
Add dislike
Add to saved papers

Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay.

Talanta 2017 March 2
Förster resonance energy transfer (FRET) between lanthanide ion complexes (L) acting as donors and luminescent semiconductor quantum dots (QD) acting as acceptors is discussed in the terms of advantages and disadvantages for its application in immunoassay. L-QD-FRET is potentially a powerful tool that can be used to detect and confirm formation of immunocomplexes, but until now it had very limited practical analytical application. Therefore, the main aim of this review is to analyze all possibilities, advantages, and disadvantages of L-QD-FRET in immunoassay applications. Considering L and QD respectively applied as donor and acceptor, the most advantageous properties for analytical purposes are large decay time of L complexes and the high absorption of QD. L complexes' extremely long decay times make it possible to directly detect FRET through enhancement of QDs decay time as a result of energy transfer. Very high QD absorption predetermines extremely large Förster radii (ca. 10nm), which means that FRET can be utilized for proteins and protein complexes, such as antigen-antibody systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app