JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: implications for susceptibility to climate change.

Global Change Biology 2017 September
While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold-water pipefish as model. We found that populations differed with respect to body size, length of the breeding season, fecundity, and sexual dimorphism across a wide latitudinal gradient. We encountered two types of latitudinal patterns, either linear, when related to body size, or parabolic in shape when considering variables related to sexual selection intensity, such as sexual dimorphism and reproductive investment. Our results suggest that sexual selection intensity increases toward both edges of the distribution and that the large differences in temperature likely play a significant role. Shorter breeding seasons in the north and reduced periods for gamete production in the south certainly have the potential to alter mating systems, breeding synchrony, and mate monopolization rates. As latitude and water temperature are tightly coupled across the European coasts, the observed patterns in traits related to sexual selection can lead to predictions regarding how sexual selection should change in response to climate change. Based on data from extant populations, we can predict that as the worm pipefish moves northward, a wave of decreasing selection intensity will likely replace the strong sexual selection at the northern range margin. In contrast, the southern populations will be followed by heightened sexual selection, which may exacerbate the problem of local extinction at this retreating boundary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app