Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia.

FLT3 is frequently mutated and overexpressed in acute myelogenous leukemia (AML) and other hematologic malignancies. Although signaling events downstream of FLT3 receptor tyrosine kinase have been studied in depth, molecular mechanisms of how FLT3 expression is regulated at the post-transcriptional level in particular remain elusive. In this study, we investigated the roles of an RNA binding protein MSI2 as a regulator of FLT3 expression. MSI2 and FLT3 are significantly co-regulated in human AML and chronic myelogenous leukemia in blast crisis (BC-CML). Genetic loss of MSI2 leads to down-regulation of the FLT3 receptor in both AML and BC-CML cells and concomitant impairment of clonogenic growth potential. Furthermore, we demonstrate that MSI2 protein is physically bound to FLT3 mRNA transcripts, suggesting post-transcriptional control of FLT3 expression. Collectively, these results reveal a novel mode of FLT3 regulation essential for leukemia growth, which may aid in designing a targeted therapy to treat human myeloid leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app