Add like
Add dislike
Add to saved papers

Fine Mapping and Candidate Gene Analysis of the Tiller Suppression Gene ts1 in Rice.

Tiller number is one of the key factors that influences rice plant type and yield components. In this study, an EMS-induced rice tiller suppression mutant ts1 was characterized. Morphological and histological observations revealed that, in the ts1 plants, the tiller buds were abnormally formed and therefore cannot outgrow into tillers. With an F2 population derived from a cross between ts1 and an indica cultivar Wushansimiao, a major gene, tiller suppression 1 (ts1) was fine-mapped to a 108.5 kb genomic region between markers ID8378 and SSR6884 on the short arm of rice chromosome 2. Candidate gene analysis identified nineteen putative genes. Among them, ORF4 (LOC_Os02g01610) is a PPR gene which harbored a point mutation c.+733/C→T in ts1 mutant plants. A co-dominant SNP marker cd-733C/T was subsequently developed and the SNP assay demonstrated that the point mutation co-segregated with tiller suppression phenotype. Quantitative RT-PCR analysis showed that the expression level of ORF4 in ts1 plants was significantly lower than that in their wild plants, and the expression of rice tillering regulators MOC1 and HTD1 was also significantly decreased in ts1 plants. Our data indicated that ORF4 was a strong candidate gene for ts1 and ts1 might play a role in regulating rice tillering through MOC1 and HTD1 associated pathway. The results above provide a basis for further functional characterization of ts1 and will shed light on molecular mechanism of rice tillering. The informative SNP marker cd-733C/T will facilitate marker-assisted selection of ts1 in rice plant type breeding.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app