Add like
Add dislike
Add to saved papers

Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.

Three-dimensional (3D)-printed constructs made of polycaprolactone and chondrocyte-impregnated alginate hydrogel (hybrid cartilage constructs) can mimic the biphasic nature of articular cartilage, thus offering promise for cartilage tissue engineering applications. Notably, the regulatory pathway for medical device development requires validation of such constructs through in vitro bench tests and in vivo preclinical examinations for premarket approval. For this, noninvasive imaging techniques are required for effective evaluation of the progress of these cartilage constructs, especially when implanted in animal models or human subjects. However, characterization of the individual components of the hybrid cartilage constructs and their associated time-dependent structural changes by currently available noninvasive techniques is challenging as these constructs contain a combination of hydrophobic and hydrophilic biomaterials with different refractive indices. In this study, we report the use of a novel synchrotron radiation inline phase contrast imaging computed tomography (SR-inline-PCI-CT) approach for noninvasive (in situ) characterization of 3D-printed hybrid cartilage constructs that has been implanted subcutaneously in mice over a 21-day period. In parallel, traditional invasive assays were used to evaluate the in vivo performance of the implanted hybrid cartilage constructs with respect to their cell viability and secretion of cartilage-specific extracellular matrix over the 21-day period postimplantation in mice. SR-inline-PCI-CT allowed striking visualization of the individual components within the 3D-printed hybrid cartilage constructs, as well as characterization of the time-dependent structural changes after implantation. In addition, the relationship between the implanted constructs and the surrounding tissues was delineated. Furthermore, traditional assays showed that cell viability within the cartilage constructs was at least 70% at all three time points, and secretion of alcian blue- and collagen type 2-positive matrices increased progressively over the 21-day period postimplantation. Overall, these results demonstrate that the 3D-printed hybrid cartilage constructs have good in vivo performance and validate their potential for regeneration of articular cartilage in vivo. In addition, SR-inline-PCI-CT has demonstrated potential for longitudinal and noninvasive monitoring of the functionality of 3D-printed hybrid cartilage constructs in a way that is translatable to other soft tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app