Add like
Add dislike
Add to saved papers

Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942.

Bacteria and other organisms, including cyanobacteria, employ two-component signal transducing modules comprising histidine kinases and response regulators to acclimate to changing environments. While the number and composition of these modules differ among cyanobacteria, two response regulators that contain DNA binding domains, RpaB and Rre1, are conserved in all sequenced cyanobacterial genomes and are essential for viability. Although RpaB negatively or positively regulates high light and other stress-responsive gene expression, little is known about the function of Rre1. Here, they investigated the direct regulatory targets of Rre1 in the cyanobacterium Synechococcus elongatus PCC 7942. Chromatin immunoprecipitation and high-density tiling array analysis were used to map Rre1 binding sites. The sites included promoter regions for chaperone genes such as dnaK2, groESL-1, groEL-2, hspA and htpG, as well as the group 2 sigma factor gene rpoD2. In vivo and in vitro analyses revealed that Rre1 phosphorylation level, DNA binding activity and adjacent gene transcription increased in response to heat stress. These responses were much diminished in a knock-out mutant of Hik34, a previously identified heat shock regulator. Based on our results, we propose Hik34-Rre1 is the heat shock-responsive signaling module that positively regulates major chaperone and other genes in cyanobacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app