Add like
Add dislike
Add to saved papers

Mechanism of type-III protein secretion: Regulation of FlhA conformation by a functionally critical charged-residue cluster.

The bacterial flagellum contains a specialized secretion apparatus in its base that pumps certain protein subunits through the growing structure to their sites of installation beyond the membrane. A related apparatus functions in the injectisomes of gram-negative pathogens to export virulence factors into host cells. This mode of protein export is termed type-III secretion (T3S). Details of the T3S mechanism are unclear. It is energized by the proton gradient; here, a mutational approach was used to identify proton-binding groups that might function in transport. Conserved proton-binding residues in all the membrane components were tested. The results identify residues R147, R154 and D158 of FlhA as most critical. These lie in a small, well-conserved cytoplasmic domain of FlhA, located between transmembrane segments 4 and 5. Two-hybrid experiments demonstrate self-interaction of the domain, and targeted cross-linking indicates that it forms a multimeric array. A mutation that mimics protonation of the key acidic residue (D158N) was shown to trigger a global conformational change that affects the other, larger cytoplasmic domain that interacts with the export cargo. The results are discussed in the framework of a transport model based on proton-actuated movements in the cytoplasmic domains of FlhA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app